

Efeito da temperatura dos gases da carbonização de Corymbia sp. no rendimento de extrato pirolenhoso

Pedro Augusto Teixeira de Oliveira¹; Camila Batista da Silva Lopes²; Angélica de Cássia Oliveira Carneiro¹; Dandara Paula da Silva Guimarães¹; Davi Pimenta Fialho¹; João Gilberto Meza Ucella Filho¹.

¹ Laboratório de Painéis e Energia da Madeira (LAPEM), Universidade Federal de Viçosa (UFV), Viçosa/MG, Brasil; ² Maringá Ferro-Liga, Itapeva/SP, Brasil – <u>lapem@ufv.br</u>

Resumo: Durante a carbonização, gases condensáveis e não condensáveis, são produzidos e comumente lançados à atmosfera, afetando o meio ambiente. A recuperação dos gases condensáveis, visando obtenção do extrato pirolenhoso, é uma estratégia adotada para minimizar os problemas ambientais. Desse modo, este trabalho teve por objetivo avaliar a produção do extrato pirolenhoso, considerando diferentes faixas de temperatura dos gases da carbonização de *Corymbia citriodora* x *torelliana*, em um sistema fornos-fornalha adaptado para condensação de gases. Foi desenvolvido um recuperador, para monitorar a temperatura dos gases. O extrato foi coletado em três faixas de temperatura (65-85°C, 85-150°C e 150-170°C). Observou-se que as faixas de coleta nas temperaturas entre 65-85°C e 150-170°C apresentaram baixa geração de extrato pirolenhoso, enquanto entre 85-150°C foi responsável pelo maior rendimento deste subproduto. Conclui-se que o recuperador apresentou eficácia na coleta do extrato pirolenhoso, promovendo uma redução significativa das emissões gasosas da carbonização e podendo ainda ser rentável.

Palavras-chave: Recuperador; Gases condensáveis; Sustentabilidade

The effect of gas temperature on the carbonization of Corymbia sp. on the yield of pyroligneous extract.

Abstract: During carbonization, condensable and non-condensable gases are produced and commonly released into the atmosphere, affecting the environment. The recovery of condensable gases, aiming to obtain pyroligneous acid, is a strategy adopted to minimize environmental problems. Thus, this study aimed to evaluate the production of pyroligneous acid, considering different temperature ranges of gases from the carbonization of *Corymbia citriodora x torelliana*, in a furnace-furnace system adapted for gas condensation. A recuperator was developed to monitor the temperature of the gases. The extract was collected in three temperature ranges (65-85°C, 85-150°C, and 150-170°C). It was observed that the collection ranges at temperatures between 65-85°C and 150-170°C showed low generation of pyroligneous acid, while between 85-150°C was responsible for the highest yield of this byproduct. It is concluded that the recuperator showed effectiveness in collecting pyroligneous acid, promoting a significant reduction in gas emissions from carbonization and could be profitable as sociedade Brasileira

Industrial S DE CIÊNCIA E TECNOLOGIA Madeireira DA MADEIRA

Keywords: Recuperator; Condensable gases; Sustainability.

1. INTRODUÇÃO

A carbonização, também conhecida como pirólise lenta da madeira, consiste na transformação termoquímica da madeira em carvão vegetal (Pecha; Garcia-Perez, 2020). Este processo é dividido em quatro fases: inicialmente, a primeira fase consiste na secagem da madeira a uma temperatura em torno de 200°C; em seguida, na segunda fase, ocorre a degradação das hemiceluloses, que se dá entre 200 e 270°C; a terceira fase corresponde a decomposição da celulose, ocorrendo entre 270 e 315°C; por fim, na quarta e última fase, ocorre a fixação do carbono e polimerização do carvão, entre 315 e 400°C (Damasio et al., 2015; Jesus, 2020). Além do produto sólido resultante, durante o processo, também são produzidos gases condensáveis e gases não condensáveis.

Atualmente, a maior parte da produção de carvão vegetal no Brasil provém de médios e pequenos produtores, os quais têm um baixo nível tecnológico de produção, com a utilização de fornos rudimentares, gerando um menor rendimento de carvão vegetal e um descontrole nas emissões de gases à atmosfera, sendo esta prejudicial a salubridade das unidades produtoras e do ambiente ao entorno (Oliveira et al., 2013). Portanto, torna-se necessário buscar formas para uma produção mais sustentável, visando minimizar os impactos ao meio ambiente. Nesse contexto, a recuperação dos gases condensáveis apresenta-se como alternativa promissora.

Os gases condensáveis podem ser divididos em duas partes: alcatrão insolúvel e extrato pirolenhoso. O alcatrão insolúvel apresenta coloração preta, com textura oleosa e insolúvel em água. Enquanto o extrato pirolenhoso, ou também chamado de vinagre da madeira, ácido pirolenhoso e líquido pirolenhoso, corresponde a parte aquosa, sendo produto composto com diferentes tipos de substâncias químicas formadas a partir da degradação da madeira. Esta complexa estrutura, com mais de 200 compostos químicos já identificados (Wu et al., 2015), pode variar em função da temperatura a qual são submetidos os gases (Cheng et al., 2021).

A composição química complexa do extrato pirolenhoso vem chamando bastante a atenção e descertando granides sociedade BRASILEIRA parte das empresas, por poder ser um produto com aplicabilidade para desenvolvimento de produtos diversos, como fertilizantes (Cândido et al., 2023) e fármacos (Ucella-Filho et al.,

2024). Com isso, além de tornar a produção mais sustentável, pode agregar valor à atividade, gerando uma nova fonte de renda aos produtores rurais (Wang et al., 2020).

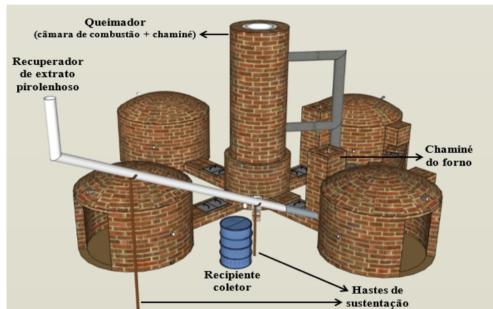
Desse modo, este trabalho teve por objetivo avaliar a produção de extrato pirolenhoso, considerando diferentes faixas de temperatura dos gases da carbonização de *Corymbia citriodora* x *torelliana*, em um sistema fornos-fornalha adaptado para condensação de gases.

2. MATERIAL E MÉTODOS

O trabalho foi realizado no Laboratório de Painéis e Energia da Madeira (LAPEM) da Universidade Federal de Viçosa (UFV), em Viçosa, Minas Gerais. Para o experimento utilizou-se madeira de *Corymbia citriodora* x *torelliana* (clone AEC043), aos 7 anos, provenientes de plantio localizado no município de Bom Despacho, Minas Gerais, com espaçamentos 4 x 1,87 m e incremento médio anual de 35 m³/ha/ano, com casca. Para a realização da carbonização e recuperação do extrato pirolenhoso, foi utilizado um forno do sistema fornos-fornalha, que consiste em um conjunto de quatro fornos circulares, com capacidade volumétrica de 1,0 m³ de madeira, interligados por meio de dutos a um queimador de gases central (fornalha). Antes de cada processo de carbonização para coleta do extrato pirolenhoso, determinou-se o teor de umidade, base seca, da madeira enfornada.

Ao sistema fornos-fornalha foi adaptado um mecanismo de condensação de gases para extração e coleta do extrato pirolenhoso, sendo este sistema composto por uma tubulação metálica interligada a uma tubulação em PVC, formando o recuperador, hastes de sustentação, coletor e um sistema para controle de temperatura. O aparelho foi acoplado na parte lateral da chaminé, fazendo com que os gases saíssem pela tubulação. Devido ao grande comprimento do recuperador, durante o percurso, os gases perdiam temperatura para o meio externo, promovendo a liquefação de toda fração condensável dos gases. Dessa forma, por meio da ação da gravidade e inclinação do tubo, o extrato gerado escorria e caia dentro do coletor, como mostrado na Figura 1.

Com a determinação préviado previado pr


Em que:

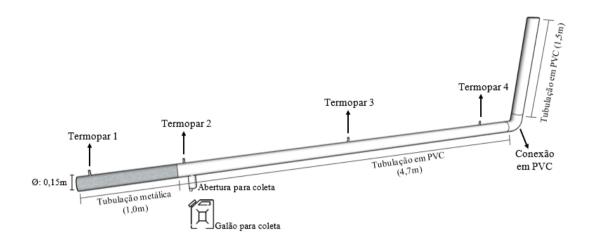
RG_x = rendimento gravimétrico da variável em questão (%);

 M_x = massa da variável analisada (kg);

 M_{MS} = massa de madeira seca (kg).

Figura 1. Esquema do Sistema Fornos-Fornalha como o recuperador de extrato pirolenhoso.

O monitoramento da temperatura de saída dos gases foi realizado a partir de quatro termopares tipo "K", inseridos em tubos metálicos que foram acoplados ao longo do recuperador a 12 cm, 1,2 m., 3,2 m e 5,2 m de distância em relação ao início da tubulação (Figura 2). A extração dos gases foi iniciada a partir do momento que o termopar, localizado no duto que liga o forno ao queimador de gases do sistema fornos-fornalha, registrou temperatura igual a 65°C, evitando, assim, a coleta de maior quantidade de água, visto que a primeira etapa da carbonização é a secagem da madeira. Ao atingir 65°C, o fluxo de gases para o queimador foi interrompido, o recuperador foi devidamente acoplado na lateral da chaminé e a saída dos gases da carbonização passou a ser pela tubulação de recuperação do extrato pirolenhoso.


Figura 2. Representação do Recuperador de extrato pirolenhoso.

A coleta do extrato pirolenhoso foi realizada, tomando como base a temperatura do termopar a 12 cm do início do recuperador, em três faixas de temperaturas: 65-85°C, 85-150°C e 150-170°C. Quando a temperatura dos gases atingiu valor maior que 170°C, a coleta foi interrompida, o recuperador foi tirado, o fluxo de gases voltou a ser em direção ao queimador e a carbonização seguiu normalmente. Os galões contendo o extrato coletado, foram deixados em repouso por seis meses em ambiente protegido da luz e após esse período foram coletadas amostras do sobrenadante de cada tratamento e realizado a caracterização do extrato pirolenhoso. O delineamento foi inteiramente casualizado com três tratamentos (faixas de temperaturas), em três repetições (carbonizações).

3. RESULTADOS E DISCUSSÃO

A madeira de *Corymbia citriodora* x *torelliana* apresentou teor de umidade variando de 23-27%, tendo a primeira fase da pirólise, ou seja, a secagem, um tempo de dez horas. A temperatura de 65°C na saída do forno, foi alcançada após aproximadamente quatro horas após a ignição.

O tempo de coleta do extrato pirolenhoso na faixa de 65-85°C ocorreu durante seis horas, após esse período, quando a temperatura dos gases já ultrapassava os 85°C, foi dado início a segunda faixa de coleta, 85-150°C. Esta nova faixa de temperatura durou 12 h, sendo a mais representativa e com maior quantidade de extrato plenhoso de coleta de co

os valores médios dos parâmetros do extrato pirolenhoso em função dos tratamentos.

Tabela 1. Média dos valores do extrato pirolenhoso, em função das faixas de temperatura dos gases da carbonização

	Tabela dos gases (°C)			
Parâmetro				Total
	60 – 85	85 – 150	150 – 170	
Volume de EP (L)	10,5	18,5	0,9	29,8
Massa de EP (kg)	10,0	19,01	0,9	30,1
Rendimento gravimétrico em EP (%)	2,8	5,4	0,3	8,5
Temperatura da copa do forno (°C)	195	302,8	372,5	-

^{*}EP: Extrato pirolenhoso.

Na Tabela 2 são apresentados os rendimentos gravimétricos dos produtos da carbonização da madeira.

Tabela 2. Valores médios dos rendimentos dos produtos da carbonização da madeira

Carvão Vegetal (%)	Atiço (%)	Finos (%)
28,26%	0,28%	2,10%
101,0kg	1,0kg	7,5kg

O rendimento gravimétrico total em extrato pirolenhoso (8,5%) foi semelhante ao encontrado na literatura para a produção de extrato pirolenhoso a partir de madeira de eucalipto (Machado et al. 2013), ao avaliarem o desempenho de uma unidade carbonizadora com recuperação de extrato pirolenhoso, obtiveram rendimento máximo de 7,0% em extrato e rendimento em carvão vegetal de 23,0%.

A maior produção e extrato pirolen se se gunda faixa de temperatura (85-150°C) está diretamente ligada às fases de carbonização que ocorrem nesse intervalo. Nesse ponto, as temperaturas dentro do forno são maiores, o que

promove uma maior decomposição dos componentes químicos da madeira, principalmente hemicelulose e celulose, levando a uma maior produção de mistura de hidrocarbonetos e compostos oxigenados, lineares ou cíclicos (Suarez et al., 2007), acarretando uma elevada emissão de gases não condensáveis e condensáveis e gerando uma maior coleta de extrato pirolenhoso (5,4%). Por outro lado, na primeira faixa de temperatura ocorre, principalmente, a secagem da madeira, liberando água durante a carbonização (2,8%). Enquanto na última faixa, ocorre uma degradação parcial da lignina e uma diminuição do conteúdo de material volátil (0,3%).

4. CONCLUSÃO

O recuperador e todo sistema utilizado, mostrou-se bastante eficiente, obtendo rendimentos em extrato semelhantes aos observados na literatura, para sistemas similares, com destaque para a coleta na faixa de 85 a 150°C, na qual se obteve maior produtividade, devido a sua relação com a segunda e terceira fase da carbonização, fases estas que promovem um alto grau de desagregação dos componentes químicos da madeira, acarretando, assim, uma elevada emissão de gases não condensáveis e condensáveis. O recuperador de extrato pirolenhoso apresentou eficácia na diminuição da emissão de gases. Além disso, seu custo de implementação é baixo, o que permite acesso aos pequenos e médios produtores de carvão vegetal. Dessa forma, além de contribuírem com o meio ambiente, a recuperação do extrato pode vir a ser uma fonte de renda para esses produtores, através da sua comercialização.

5. AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), à Universidade Federal de Viçosa (UFV), iao Departamento de Engenharia Florestal (DEF/UFV), à empresa de lormittal de Pociencia e Tecnológico (CNPq), e a EMBRAPII Unidade Fibras Florestais.

6. REFERÊNCIAS

CANAL, W. D.; CARVALHO, A. M. M. L.; CARNEIRO, A. C. O. et al. Efeito do teor de umidade da madeira na emissão de gases de efeito estufa no processo de carbonização. **Scientia Forestalis**, v. 44, n. 112, p. 831-840, 2016.

CÂNDIDO, N. R.; PASA, V. M. D.; OLIVEIRA, V. A. et al. Understanding the multifunctionality of pyroligneous acid from waste biomass and the potential applications in agriculture. **Science of The Total Environment**, v. 881, p. 163519, 2023.

CHENG, J.; HU, S. C.; KANG, K. et al. The effects of pyrolysis temperature and storage time on the compositions and properties of the pyroligneous acids generated from cotton stalk based on a polygeneration process. **Industrial Crops and Products**, v. 161, p. 113226, 2021.

DAMASIO, R. A. P.; OLIVEIRA, A. C.; CARNEIRO, A. C. O. et al. Perfil térmico e controle da carbonização em forno circular por meio da temperatura interna. **Ciência da Madeira**, v. 6; n. 1, p. 11-22, 2015.

MACHADO, G. H. L.; LUCHI, I. F.; BISSI, L. B. et al. Montagem e caracterização de um forno piloto para a produção e recuperação do extrato pirolenhoso proveniente da carbonização da madeira. **Enciclopédia Biosfera**, v. 9, n. 6, p. 2930-2941, 2013.

OLIVEIRA, A. C.; CARNEIRO, A. C. O; PEREIRA, B. L. C. et al. Otimização da produção do carvão vegetal por meio do controle de temperaturas de carbonização. **Revista Árvore**, v. 37, p. 557-566, 2013.

PECHA, B. M.; GARCIA-PEREZ, M. Pyrolysis of lignocellulosic biomass: oil, char, and gas. Chapter 29. 39p. National Renewable Energy Laboratory, USA; Washington State University, Richland, WA, USA. 2020.

SUAREZ, P. A. Z.; MENEGHETTI, S. M. P; MENEGHETTI, M. R. et al. Transformação de triglicerídeos em combustíveis materiais poliméricos e insumos químicos: algumas aplicações da catálise na oleoquímica. **Química Nova**, v. 30, n. 3, 667-676, 2007.

UCELLA-FILHO, J. G. M., FERREIRA, N. S., CUPERTINO, G. F. M. et al. Antiviral potential of bio-oil from *Citrus sinensis* waste wood as a therapeutic approach against COVID-19. **Journal of Cleaner Production**, v. 447, p. 141583, 2024.

WANG, C.; ZHANG, S.; WU, S. et al. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process. Fuel, v. 282, 9p., 2020.

WU, Q.; ZHANG, S.; HOU, B. et al. Study on the preparation of wood vinegar from biomass residues by carbonization process. **Bioresource Technology**, v. 179, p.

98-103, 2015.

